资源类型

期刊论文 418

会议视频 5

年份

2024 1

2023 59

2022 35

2021 42

2020 33

2019 36

2018 29

2017 16

2016 18

2015 25

2014 28

2013 22

2012 10

2011 8

2010 12

2009 12

2008 11

2007 14

2005 1

2004 1

展开 ︾

关键词

吸附 4

电动汽车 3

2023全球十大工程成就 2

快速充电 2

重金属废水 2

Tetrasphaera 1

G蛋白偶联受体 1

H2S 1

MOF基催化剂 1

NASICON 1

P4 1

PEDOT:PSS 1

PH3 1

PM2.5脱除 1

X射线 1

γ-氨基丁酸A型受体 1

“上限” 1

下一代 1

中性原子量子计算 1

展开 ︾

检索范围:

排序: 展示方式:

Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters

Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1018-1028 doi: 10.1007/s11705-020-1915-z

摘要: An ion-imprinted sorbent (IIP) was prepared by using Ni as template, 3-[2-(2-aminoethylamino) ethylamino] propyl-trimethoxysilane as functional monomer, and silica gel as carrier. The adsorption performance of IIP towards Ni was investigated. IIP showed a higher adsorption capacity than that of non-imprinted sorbent, and it also exhibited high selectivity for Ni in the presence of Cu and Zn ions. Then, IIP was used to form a dynamic membrane onto the surface of ceramic membrane for treatment of electroplating wastewater containing Ni . Compared with ceramic membrane, IIP dynamic membrane had much higher steady membrane flux, and also rejected Ni to obtain a lower concentration of Ni in the permeate fluid. Perhaps it is suitable for future practice applications.

关键词: ion-imprinted     nickel ion     dynamic membrane     adsorption    

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN

《环境科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 317-323 doi: 10.1007/s11783-013-0596-y

摘要: Microbial desalination cell (MDC) is a promising technology to desalinate water and generate electrical power simultaneously. The objectives of this study were to investigate the desalination performance of monovalent and divalent cations in the MDC, and discuss the effect of ion characteristics, ion concentrations, and electrical characteristics. Mixed salt solutions of NaCl, MgCl , KCl, and CaCl with the same concentration were used in the desalination chamber to study removal of cations. Results showed that in the mixed salt solutions, the electrodialysis desalination rates of cations were: Ca >Mg >Na >K . Higher ionic charges and smaller hydrated ionic radii resulted in higher desalination rates of the cations, in which the ionic charge was more important than the hydrated ionic radius. Mixed solutions of NaCl and MgCl with different concentrations were used in the desalination chamber to study the effect of ion concentrations. Results showed that when ion concentrations of Na were one-fifth to five times of Mg , ion concentration influenced the dialysis more profoundly than electrodialysis. With the current densities below a certain value, charge transfer efficiencies became very low and the dialysis was the main process responsible for the desalination. And the phosphate transfer from the anode chamber and potassium transfer from the cathode chamber could balance 1%–3% of the charge transfer in the MDC.

关键词: divalent ion     electrodialysis     ion characteristic     microbial desalination cell     monovalent ion    

Arsenic (V) removal from groundwater by GE-HL nanofiltration membrane: effects of arsenic concentration

Xiaowei WANG, Wenjun LIU, Weifang MA, Desheng LI,

《环境科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 428-433 doi: 10.1007/s11783-009-0146-9

摘要: A laboratory-scale investigation was performed to study arsenic (As (V)) removal by negatively charged GE-HL nanofiltration (NF) membrane in simulated drinking water. Effects of As (V) concentration (0–200μg·L), pH, and co-ions and counter-ions were investigated. The NF membrane presented good stability, and the rejection rates exceeded 90%. The rejection rates of As (V) decreased with the increase of As (V) concentration, while it increased with the increase of pH (reached 96% at pH 6.75). Moreover, a negative relationship was observed between the co-existing ions of Cl, Na, SO, and Ca and the removal of As (V), in which bivalent ions presented more significant effects than monovalent ions.

关键词: nanofiltration (NF)     rejection rate     co-existing ion     co-ion     counter-ion    

EFFICIENT CONTAMINANT REMOVAL FROM LIQUID DIGESTATE OF PIG MANURE BY CHEMICAL PRECIPITATION AND CO MINERALIZATION

《农业科学与工程前沿(英文)》 2023年 第10卷 第3期   页码 479-491 doi: 10.15302/J-FASE-2023480

摘要:

● LFD was treated by fly ash-based chemical precipitation and CO2 mineralization.

关键词: anaerobic digestion     chemical oxygen demand     fly ash     ion removal     total phosphate    

The removal of trimethoprim and sulfamethoxazole by a high infiltration rate artificial composite soil

Qinqin Liu,Miao Li,Fawang Zhang,Hechun Yu,Quan Zhang,Xiang Liu

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0920-z

摘要: Artificial composite soil treatment system with the high infiltration rate (1.394 m·d ) had a good removal efficiency of TMP (80%–90%) and SMX (60%–70%). The removal mechanism of TMP and SMX was mainly sorption and was related with hydrogeochemical process. Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K , Na , Ca , Mg hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d ) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K , Ca and Mg and had a lower effluent Na concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.

关键词: Trimethoprim     Sulfamethoxazole     Artificial composite soil treatment     Hydrogeochemical processes     Ion exchange    

Removal of Zn

Feng XUE, Beicheng XIA, Rongrong YING, Shili SHEN, Peng ZHAO

《环境科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 531-538 doi: 10.1007/s11783-013-0506-3

摘要: Biosorption of Zn from aqueous solutions by biomass of was investigated. The removal rates of Zn by under different parameters (e.g., solution pH, bio-sorbent dosage and initial Zn concentration) were studied. The inhibition of ’s biosorption by anionic ligands EDTA (Ethylene Diamine Tetraacetic Acid), acetate and citrate) implied that EDTA and citrate might be used as eluting reagents. Regular and simultaneous solution pH change and light metal ions release after biosorption indicated that an ion exchange mechanism was involved. From FT-IR (Fourier Transform Infrared) spectroscopy, the main functional groups participated in biosorption were found. Biosorption of Zn by could be well described by the Freundlich and Langmuir models. In conclusion, the biomass of showed high potential for the treatment of wastewater containing Zn .

关键词: biosorption     Agaricus bisporus     zinc     ion exchange     FT-IR     isotherms    

Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities

《环境科学与工程前沿(英文)》 2023年 第17卷 第2期 doi: 10.1007/s11783-023-1625-0

摘要:

● IEM ion/ion selectivities of charge, valence, & specific ion are critically assessed.

关键词: Ion-exchange membranes     Selectivity     Separations    

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

《能源前沿(英文)》   页码 775-781 doi: 10.1007/s11708-023-0902-8

摘要: Aqueous zinc-ion batteries (ZIBs) have great prospects for widespread application in massive scale energy storage. By virtue of the multivalent state, open frame structure and high theoretical specific capacity, vanadium (V)-based compounds are a kind of the most developmental potential cathode materials for ZIBs. However, the slow kinetics caused by low conductivity and the capacity degradation caused by material dissolution still need to be addressed for large-scale applications. Therefore, sodium vanadate Na2V6O16·3H2O (NVO) was chosen as a model material, and was modified with alumina coating through simple mixing and stirring methods. After Al2O3 coating modification, the rate capability and long-cycle stability of Zn//NVO@Al2O3 battery have been significantly improved. The discharge specific capacity of NVO@Al2O3 reach up to 228 mAh/g (at 4 A/g), with a capacity reservation rate of approximately 68% after 1000 cycles, and the Coulombic efficiency (CE) is close to 100%. As a comparison, the capacity reservation rate of Zn//NVO battery is only 27.7%. Its superior electrochemical performance is mainly attributed to the Al2O3 coating layer, which can increase zinc-ion conductivity of the material surface, and to some extent inhibit the dissolution of NVO, making the structure stable and improving the cyclic stability of the material. This paper offers new prospects for the development of cathode coating materials for ZIBs.

关键词: cathodes     aqueous zinc-ion batteries     sodium vanadate     alumina     coating    

Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coatingfor high performance zinc-ion batteries

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1244-1253 doi: 10.1007/s11705-022-2293-5

摘要: Vanadium oxides as cathode for zinc-ion batteries have attracted much attention because of their high theoretical capacity, flexible layered structure and abundant resources. However, cathodes are susceptible to the collapse of their layered structure and the dissolution of vanadium after repeated long cycles, which worsen their capacities and cycling stabilities. Herein, a synergistic engineering of calcium-ion intercalation and polyaniline coating was developed to achieve the superior electrochemical performance of vanadium pentoxide for zinc-ion batteries. The pre-intercalation of calcium-ion between vanadium pentoxide layers as pillars increase the crystal structure’s stability, while the polyaniline coating on the cathodes improves the conductivity and inhibits the dissolution of vanadium. This synergistic engineering enables that the battery system based-on the polyaniline coated calcium vanadate cathode to deliver a high capacity of 406.4 mAh·g−1 at 1 A·g−1, an ultralong cycle life over 6000 cycles at 10 A·g−1 with 93% capacity retention and high-rate capability. The vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating was verified to effectively improve the electrochemical performance of zinc-ion batteries.

关键词: zinc-ion battery     CaV8O20     polyaniline coating     synergistic engineering     high capacity     long durability    

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1243-1256 doi: 10.1007/s11705-020-2029-3

摘要: Spent lithium-ion battery recycling has attracted significant attention because of its importance in regard to the environment and resource importance. Traditional hydrometallurgical methods usually leach all valuable metals and subsequently extract target meals to prepare corresponding materials. However, Li recovery in these processes requires lengthy operational procedures, and the recovery efficiency is low. In this research, we demonstrate a method to selectively recover lithium before the leaching of other elements by introducing a hydrothermal treatment. Approximately 90% of Li is leached from high-Ni layered oxide cathode powders, while consuming a nearly stoichiometric amount of hydrogen ions. With this selective recovery of Li, the transition metals remain as solid residue hydroxides or oxides. Furthermore, the extraction of Li is found to be highly dependent on the content of transition metals in the cathode materials. A high leaching selectivity of Li (>98%) and nearly 95% leaching efficiency of Li can be reached with LiNi Co Mn O . In this case, both the energy and material consumption during the proposed Li recovery is significantly decreased compared to traditional methods; furthermore, the proposed method makes full use of H to leach Li . This research is expected to provide new understanding for selectively recovering metal from secondary resources.

关键词: recycling     spent LIBs     selective recovery     hydrothermal treatment    

Preparation of lithium ion-sieve and utilizing in recovery of lithium from seawater

Lu WANG, Changgong MENG, Wei MA

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 65-67 doi: 10.1007/s11705-009-0105-9

摘要: Lithium is one of the most important light metals, which is widely used as raw materials for large-capacity rechargeable batteries, light aircraft alloys and nuclear fusion fuel. Seawater, which contains 250 billion tons of lithium in total, has thus recently been noticed as a possible resource of lithium. While, since the average concentration of lithium in seawater is quite low (0.17 mg·L ), enriching it to an adequate high density becomes the primary step for industrial applications. The adsorption method is the most prospective technology for increasing the concentration of lithium in liquid. Among the adsorbents for lithium, the ion-sieve is a kind of special absorbent which has high selectivity for Li , especially the spinel manganese oxides (SMO), which among the series of ion-sieves, has become the most promising adsorption material for lithium. In this study, the SMO ion-sieve was prepared by a coprecipitation method. The preparation conditions were discussed and the sample characters were analyzed. Recovery of Li from seawater were studied in batch experiments using prepared ion-sieve, and the effect of solution pH and the uptake rates were also investigated in different Li solutions.

关键词: lithium     ion-sieve     seawater     spinel manganese oxide    

Migration of ammonium nitrogen in ion-absorbed rare earth soils during and post mining: a column study

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1702-4

摘要:

● Column experiments with an inclined slope were applied to simulate NH4–N transport.

关键词: Ion-absorbed rare earth     Ammonium nitrogen transport     HYDRUS-2D     Numerical simulation    

Control strategies for disinfection byproducts by ion exchange resin, nanofiltration and their sequential

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1725-x

摘要:

● Effects of AER adsorption and NF on DBP precursors, DBPs, and TOX were examined.

关键词: Disinfection byproducts     Control     Anion exchange resin     Nanofiltration     Cytotoxicity    

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

Tong Zhang, Elie Paillard

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 577-591 doi: 10.1007/s11705-018-1758-z

摘要:

Lithium-ion batteries are a key technology in today’s world and improving their performances requires, in many cases, the use of cathodes operating above the anodic stability of state-of-the-art electrolytes based on ethylene carbonate (EC) mixtures. EC, however, is a crucial component of electrolytes, due to its excellent ability to allow graphite anode operation–also required for high energy density batteries–by stabilizing the electrode/electrolyte interface. In the last years, many alternative electrolytes, aiming at allowing high voltage battery operation, have been proposed. However, often, graphite electrode operation is not well demonstrated in these electrolytes. Thus, we review here the high voltage, EC-free alternative electrolytes, focusing on those allowing the steady operation of graphite anodes. This review covers electrolyte compositions, with the widespread use of additives, the change in main lithium salt, the effect of anion (or Li salt) concentration, but also reports on graphite protection strategies, by coatings or artificial solid electrolyte interphase (SEI) or by use of water-soluble binder for electrode processing as these can also enable the use of graphite in electrolytes with suboptimal intrinsic SEI formation ability.

关键词: lithium-ion     electrolyte     solid electrolyte interphase     additives     high voltage     graphite    

g-CN-coated MnO hollow nanorod cathode for stable aqueous Zn-ion batteries

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 217-225 doi: 10.1007/s11705-022-2214-7

摘要: Aqueous zinc-ion batteries are attracting considerable attention because of their high safety compared with conventional lithium-ion batteries. Manganese-based materials have been widely developed for zinc-ion batteries cathode owning to their low cost, high security and simple preparation. However, the severe volume expansion and poor stability during charging and discharging limit the further development of manganese-based cathodes. Herein, superior α-MnO2@g-C3N4 was successfully prepared for stable zinc-ion batteries (ZIBs) cathode by introducing g-C3N4 nanosheets. Compared with pure α-MnO2, α-MnO2@g-C3N4 has a specific capacity of 298 mAh·g–1 at 0.1 A·g–1. Even at 1 A·g–1, the α-MnO2@g-C3N4 still retains 100 mAh·g–1 (83.4% retention after 5000 cycles), implying its excellent cycling stability. The α-MnO2@g-C3N4-based cathode has the highest energy density (563 Wh·kg–1) and power energy density (2170 W·kg–1). This work provides new avenues for the development of a wider range of cathode materials for ZIBs.

关键词: α-MnO2 hollow nanorods     g-C3N4     heterojunction     aqueous Zn-ion batteries    

标题 作者 时间 类型 操作

Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters

Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian

期刊论文

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN

期刊论文

Arsenic (V) removal from groundwater by GE-HL nanofiltration membrane: effects of arsenic concentration

Xiaowei WANG, Wenjun LIU, Weifang MA, Desheng LI,

期刊论文

EFFICIENT CONTAMINANT REMOVAL FROM LIQUID DIGESTATE OF PIG MANURE BY CHEMICAL PRECIPITATION AND CO MINERALIZATION

期刊论文

The removal of trimethoprim and sulfamethoxazole by a high infiltration rate artificial composite soil

Qinqin Liu,Miao Li,Fawang Zhang,Hechun Yu,Quan Zhang,Xiang Liu

期刊论文

Removal of Zn

Feng XUE, Beicheng XIA, Rongrong YING, Shili SHEN, Peng ZHAO

期刊论文

Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities

期刊论文

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

期刊论文

Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coatingfor high performance zinc-ion batteries

期刊论文

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

期刊论文

Preparation of lithium ion-sieve and utilizing in recovery of lithium from seawater

Lu WANG, Changgong MENG, Wei MA

期刊论文

Migration of ammonium nitrogen in ion-absorbed rare earth soils during and post mining: a column study

期刊论文

Control strategies for disinfection byproducts by ion exchange resin, nanofiltration and their sequential

期刊论文

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

Tong Zhang, Elie Paillard

期刊论文

g-CN-coated MnO hollow nanorod cathode for stable aqueous Zn-ion batteries

期刊论文